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1 Category Theory

1.1 Categories

The purpose of category theory is to generalize common properties of existing structures
so we do not need to refer to the internal structure of our objects at all.

Definition 1.1. A category is a collection of objects and a set of morphisms such that

1. Each morphism has a domain and a range, both of which are objects

2. For each object a, there is an identity morphism 1a

3. For morphisms X : a→ b and Y : b→ c, there is a composite morphism Y ◦X

4. (X ◦ Y ) ◦ Z = X ◦ (Y ◦ Z) if both are defined

5. 1b ◦X = X ◦ 1a = X if X : a→ b

Example 1.1. In the category of sets, the objects are sets, and the morphisms/arrows are
functions.

Example 1.2. In the category of groups, the objects are groups, and the morphisms/arrows
are group homomorphisms.

Example 1.3. In the category of topological spaces, the objects are topological spaces,
and the morphisms/arrows are continuous functions.

Example 1.4. Take a category with a single object, and let the morphisms be the elements
of a group G, where composition of the morphisms is the group operation. This is a group.

Example 1.5. Let S be a partially ordered set with ≤. We can make a category with
objects equal to the elements of S and morphisms from a→ b such that there is 1 morphism
if a ≤ b and 0 otherwise.
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1.2 Functors

Definition 1.2. A (covariant) functor F from a category C to a category D is defined by
the properties

1. F is a function from objects of C to objects of D

2. F is a function1 from morphisms of C to morphisms of D

3. F (1A) = 1F (A)

4. F (f ◦ g) = F (f) ◦ F (g).

Let f : A → B be a morphism. The fourth condition makes it so F (f) is a morphism
from F (A)→ F (B); this is because we can set g = 1A.

Example 1.6. We can define a functor F from the category of groups to the category of
sets by F (G) = the underlying set of G. F sends group homomorphisms to themselves as
functions.

Example 1.7. The reason why functors were introduced was to study homology groups
Hi. Hi is a functor from topological spaces to abelian groups.

Example 1.8 (Abelianization of a group). Suppose G is a group. We can make G abelian
by quotienting out G/

〈{
ghg−1h−1 : g, h ∈ G

}〉
to get an Abelian group Gab. This is a

functor from Groups to Abelian groups. If f : G → H, we get a map Gab → Hab

(exercise).

Example 1.9. We have a functor from sets to abelian groups given by F (S) = Fab(S), the
free abelian group on S. This is the set of elements n1s1+n2s2+· · · such that all but finitely
many ni = 0. If f : S → S′ is a function, F (f ′) : S → S′ sends

∑
α nαsα 7→

∑
α nαs

′
α.

Example 1.10. Take a group G, viewed as a category with 1 object. A functor from the
group to sets will send the 1 object to some set and each g ∈ G to some function S → S.
So we get the action of G on a set S, the permutations of S.

Definition 1.3. A contravariant functor is a functor where F (f ◦ g) = F (g) ◦ F (f).

Similarly to the note we made above, this property implies that if f : A → B is a
morphism, F (f) is a morphism from F (B)→ F (A).

Example 1.11. Let both categories be vector spaces over the same field K. We can
define a functor F (V ) = Hom(V,K); this is V ∗, the dual of V . Suppose f : V → W is a
morphism; we must map it to some morphism F (f) : W ∗ → V ∗. We get the morphism
λ 7→ λ ◦ f .

1Really, these are two separate functions, but we refer to them together as one function, the functor F .
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Example 1.12. Suppose C is the category of a abelian groups. Look at Hom(A,B) for
abelian groups A,B. This is a bifunctor in 2 variables form C×C → C. It is covariant in B
and contravariant in A. If f : B1 → B2, we get a map F (f) : Hom(A,B1)→ Hom(A,B2).
If g : A1 → A2, we get a map F (g) : Hom(A2, B)→ Hom(A1, B).

Example 1.13. We can have the category of categories, where the objects are categories
and the morphisms are functors.

Remark 1.1. This does not actually exist because there is no set of all sets. Let R =
{x : x /∈ x}; then R ∈ R ⇐⇒ R /∈ R. Similarly, the category of all groups does not exist,
either. We have a few possible solutions:

1. Only work with groups whose elements are in some fixed large set

2. Work in set theory with “classes”

3. Grothendieck universes

4. Ignore it

We will adopt the 4th solution.

1.3 Natural transformations

What does natural mean? Look at finite dimensional vector spaces. We know that V ∼= V ∗,
but there is no natural isomorphism. However, V ∼= V ∗∗ with a “natural isomorphism”

v 7→ fv, where for each w ∈W , fv(w) = w(v).

Definition 1.4. Suppose we have 2 categories C,D with functors F : C → D and G :
C → D. A natural transformation ϕ : F → G is a function ϕ such that

1. ϕ(a) is a morphism from F (a)→ G(a)

2. if f : a→ b, ϕ(b) ◦ F (f) = G(f) ◦ ϕ(a). That is, the following diagram commutes:

F (a) G(a)

F (b) G(b)

ϕ(a)

F (f) G(f)

ϕ(b)

Example 1.14. Look at C = D = vector spaces over a field K. Let F be the identity from
C to D, and let G be the double dual, G(V ) = V ∗∗. Then there is a natural transformation
from F → G. For each vector space V , we have a morphism (in fact an isomorphism since
it has an inverse) from F (V )→ G(V ) that satisfies the conditions above.
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1.4 Products

The product is a typical construction in many spaces. Familiar examples include:

Example 1.15. The product of sets A,B is A×B = {(a, b) : a ∈ A, b ∈ B}.

Example 1.16. The product of groups A,B is A × B = {(a, b) : a ∈ A, b ∈ B} with a
group operation given by (a, b)(c, d) = (ac, bd).

Example 1.17. The product of topological spaces A,B is A×B = {(a, b) : a ∈ A, b ∈ B}
with the product topology.

Definition 1.5. Suppose X is any object with morphisms f : X → A and f : X → B.
Then a product A × B of A and B is an object with morphisms π1 : A × B → A and
π2 : A×B → B such that there exists a unique map ϕ : X → A×B such that ϕ ◦ π1 = f
and ϕ ◦ π2 = g.

X

A×B

A B

f g

ϕ

π1 π2

This property defines A×B up to canonical isomorphism (a morphism f : A→ B such
that we can find g : B → A with f ◦ g = 1B and g ◦ f = 1A). Suppose X,Y are both
products of A and B. Then the composition of the two maps ϕ,ψ between X and Y is the
identity by the uniqueness of the map defined above.

So we can define products in any category, and this definition ignores the internal
structure of the objects.

1.5 Equalizers

Definition 1.6. Let A and B be objects in a category. The equalizer of two morphisms
f, g : A→ B is an object X and a morphism h : X → A such that

1. f ◦ h = g ◦ h

2. If Y is an object with i : Y → A such that f ◦ i = g ◦ i, then Y factors uniquely
through X.

That is, the followng diagram commutes:

X A B

Y

h
f

g
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Suppose A,B are groups with f : A→ B. The kernel of f is the equalizer of f and 1,
the trivial map from A→ B.

1.6 Initial and final objects

Definition 1.7. A is an initial object if there is a unique morphism from A to any other
object in the category.

Initial objects are unique up to isomorphism (exercise).

Example 1.18. The empty set is an initial object in the category of sets.

Example 1.19. The trivial group is an initial object in the category of groups.

Definition 1.8. A is a final object if there is a unique morphism from any other object in
the category to A.

Example 1.20. A 1-element set is a final object in the category of sets.

Example 1.21. The trivial group is a final object in the category of groups.

1.7 Limits and pull-backs

Definition 1.9. A limit of {Aα} is an object X with morphisms fα : X → Aα, character-
ized by the following properties:

1. If gα,α′ : Aα → Aα′ is a morphism, then fα′ = gα,α′ ◦ fα.

2. Any Y with this property factors through X.

Y

X

A1 A2 A3

ϕ

f1
f2
f3

g1,2 g2,3

g3,1

Example 1.22. A product is a limit of A and B.

Example 1.23. The equalizer is a limit of A and B with morphisms f, g : A→ B.
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Definition 1.10. The pull-back X is a limit of A and B with morphisms f : A→ C and
g : B → C.

Y

X

A B

C

ϕ

π1 π2

f g

Example 1.24. The pull-back of sets A,B is {(a, b) ∈ A×B : f(a) = g(b)}.

1.8 Coproducts

If we reverse the arrows in a product, we get a coproduct.

X

AqB

A B

ϕ

f

π1

g

π2

Example 1.25. In the category of sets, the coproduct is the disjoint union.

Example 1.26. In the category of abelian groups, the coproduct equals A × B, so the
coproduct equals the product.

In the category of groups, what is the coproduct of A and B? It is the free group on
two generators. We will discuss this next lecture.

We can also take infinite products and coproducts. The infinite product of abelian
groups is the usual infinite product, and the infinite coproduct of abelian groups is the
subgroup of the infinite product such that all but finitely many of the coordinates vanish.
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